Model-based Reactive Planning How does it relate to STRIPS planning?

STRIPS: IF clear(top) and on(A,B)

Planning: THEN Delete on (A,B) and clear(top)

Add on(top,B)

Partially observability exogenous effects indirect control concurrent

Comparing MRP and STRIPS

STRIPS Planning

- action representation
 - strips operators with precondition and add/delete as effects.
- state variables only change directly by operator add/delete.
- Operators are invoked directly

- State is held constant when operators are not invoked.
- Operators are invoked one at a time.

Model-based Reactive Planning

- action representation
 - state transitions ρ_{τ}
 - co-temporal interactions ρ_{Σ}
- state variables change through transitions or through interactions.
- Transitions are controlled by establishing control values which interact with internal variables.
- State changes may not be preventable.
- Enabling one transition may necessarily cause a second transition to occur.

How Burton Achieves Reactivity

Problem: Model-based Planning is NP Hard.

Solution:

- Model compilation eliminates cotemporal interactions ρ_{Σ} , hence presolving NP hard part while preserving expressivity.
- Exploit fact that hardware typically behaves like STRIPS ops.
 - individual controllability & persistance
- Exploit requirement that the planner avoid damaging effect.
- Exploit causal, loop-free structure of hardware topology.
- Compile transitions into a compact set of concurrent policies.

Burton Model-based Reactive Planner: [Williams & Nayak 97]

Generates first plan action in average case constant time.

Driver Valve Example

Valve Driver dr Valve vlv | flowin dcmdin vcmdin **♦** flowout dcmdin = reset Resettable **Stuck** Open open dcmdin = offdcmdin = on vcmdin = open | vcmdin = close **Stuck** Permanent

dr = resettable & dcmdin = reset \Rightarrow next (dr1 = on)

failure

- $dr1 = on \& dcmdin = open \Rightarrow$ vcmdin = open

 $vlv = closed \& vcmdin = open \Rightarrow$ next (vlv = open)

closed

- $vlv = open \& flowin = pos \Rightarrow$ flowout = pos

Closed

Off

1. Model Compilation

Idea:

Eliminate hidden variables (vcmdin) and cotemporal interactions ρ_{Σ} , resulting in transitions that depend only on control variables (dcmdin) and state variables (dr,vlv).

Models are Compiled through Prime Implicate Generation

Compiled transitions are all formula of the form

$$\Phi_i \Rightarrow \text{next}(y_i = e_i)$$

implied by the original transition specification, where Φ_i is a smallest conjunction without hidden variables (i.e., prime implicates).

• Example:

```
vlv = closed & vcmdin = open ⇒ next (vlv = open)
dr1 = on & dcmdin = open ⇒ vcmdin = open
compile to:
```

```
vlv = closed \& dr = on \& dcmdin = open \implies next (vlv = open)
```

• 40 seconds on SPARC 20 for 12,000 clause spacecraft model.

Simplifying to Strips

- Difference 1: Transitions can occur without control actions.
 - $tub = empty \& faucet = on \implies next (tub = non-empty)$
- Requirement 1:
 - Each control variable has an idling assignment.
 - No idling assignment appears in any transition.
 - The antecedent of every transition includes a non-idling control assignment.
- Example:
 - drcmdin has idling value "none" and non-idling dcmdin = open
 - vlv = closed & dr = on & dcmdin = open \Rightarrow next (vlv = open)

Simplifying to Strips (cont.)

- Difference 2: Control actions can invoke multiple transitions.
 - vlv1 = closed & dr = on & dcmdin = open \Rightarrow next (vlv1 = open)
 - $\text{vlv2} = \text{closed \& dr} = \text{on \& dcmdin} = \text{open} \implies \text{next (vlv2} = \text{open)}$
- Definition: The control(state) conditions of a transition are the control(state) variable assignments of its antecedent condition.
 - state condition: vlv1 = closed & dr = on
 - control condition: dcmdin = open
- Requirement 2:
 - No set of control conditions of one transition is a proper subset of the control conditions of a different transition.

But STRIPS is still intractable.

Reasons Search is Needed

- 1) An achieved goal can be clobbered by a subsequent goal.
 - e.g., achieving dr = off and then vlv = open clobbers dr = off.

- 2) Two goals can compete for the same variable in their subgoals.
 - e.g., latch1 and latch2 compete for the position of switch sw.

- 3) A state transition of a subgoal variable has irreversible effect.
 - e.g., assume sw can be used once, then latch1 must be latched before latch2.

To achieve reactivity we eliminate all forms of search.

Exploiting Causality to Avoid Threats

• Observation: Component schematics tend not to have feedback loops.

• The *Causal Graph* G of compiled transition systems S is a directed graph whose vertices are state variables. G contains an edge from v1 to v2 if v1 occurs in the antecedent of v2's transition.

Requirement 3: The causal graph must be acyclic.

Exploiting Causality to Avoid Threats

Idea: Achieve goals by working from effects to causes (e.g., vlv then dr), completing one goal before starting the next.

- work on vlv = closed
 - work on dr = on
 - next-action: Cmd = dr-on
 - next action: Cmd = vlv-close
- work on dr = off
 - next action: Cmd = dr-off

How to Avoid Clobbering Sibling Goals

• The only variables necessary to achieve y = e are the ancestors of y, y can be changed without affecting its descendants.

- To avoid clobbering achieved goals Burton solves goals in an upstream order.
- Upstream order corresponds to achieving goals in order of increasing depth first number.

How to Avoid Clobbering Shared Subgoals

• Shared ancestors of sibling goals are required to establish both goals.

Ancestors are no longer needed once goal has been satisfied.

• **Solution:** To avoid clobbering shared subgoal variables, solve one goal before starting on next sibling.

Burton: Online Algorithm (incomplete)

NextAction(initial state θ , target state γ , compiled system S')

- **Select unachieved goal:** Find unachieved goal assignment with the lowest topological number. If all achieved return **Success.**
- **Select next transition:** Let t_y be the transition graph in S for goal variable y. Nondeterministically select a path p along transitions in t_y from e_i to e_f. Let SC and CC be the state and control conditions of the first transition along p.
- Enable transition: Control = NextAction(θ ,SC,S'). If Control = Success then state conditions SC are already satisfied, return CC to effect transition. If **Failure** return it. Otherwise Control contains control assignments to progress on SC. Return Control.

Some search still remains

Exploiting Safety

• Requirement 4: Only reversible transitions are allowed, except when repairing a component.

Rationale: Irreversible actions expend non-renewable resources. Should only be performed after careful (human?) deliberation.

Using Reversibility to Avoid Deadend (Sub) Goals

Lemma:

• A & B is reachable from θ by reversible transitions exactly when A and B are separately reachable from θ by reversible transitions.

- Idea:
- Precompute and label all assignments that can be **reversibly** achieved from initial state θ .
- Only use assignments labeled **reversible** as (sub)goal, and transitions involving **reversible** assignments.
- Exploit Lemma to test if top-level goals are achievable.

Defining Reversibility

Definition:

- An assignment $y = e_k$ can be **Reversibly** achieved starting at $y = e_i$ if there exists a path along **Allowed** transitions from initial value e_i to e_k and back.
- A transition is **Allowed** if all its state conditions are **Reversible**.

Burton: Reversibility Labeling Algorithm

LabelSystem(initial state θ , compiled system S')

For each state variable y of S' in decreasing topological order:

- For each transition τ_y of y, label τ_y **Allowed** if all its state conditions are labeled **Reversible**.
- Compute the strongly connected components (SCCs) of the **Allowed** transitions of y.
- Find y's initial value $y = e_i$ in θ . Label each assignment in the SCC of $y = e_i$ as **Reversible**.

Burton: Online Algorithm

NextAction(initial state θ , target state γ , compiled system S', true?)

- Solvable goals?: When top? = True, unless each goal g in γ is labeled **Reversible**, return **Failure**.
- **Select unachieved goal:** Find unachieved goal assignment with the lowest topological number. If all achieved return **Success.**
- **Select next transition:** Let t_y be the transition graph in S for goal variable y. Find a path p in t_y from e_i to e_f along transitions labeled **Allowed**. Let SC and CC be the state and control conditions of the first transition along p.
- Enable transition: Control = NextAction(θ,SC,S'). If Control = Success then state conditions SC are already satisfied, return CC to effect transition. Otherwise Control contains control assignments to progress on SC. Return Control.

Incorporating Repair Actions

Definition: A repair is a transition from a failure assignment to a nominal assignment.

Idea:

- Burton never uses a failure assignment to achieve a goal if the failure is repairable.
- Repair minimizes irreversible effects. If y is assigned failure e_f , Burton traverses allowed transitions from e_f to the first nominal assignment reached (nominal SCC w lowest number).
- If a failure assignment is not repairable then it can be used.

Eliminating Cost of Finding Transition Paths: Generating Concurrent Policies

- NextAction is O(e*m) where
 - e is the number of transitions for a single variable y.

table lookup

- m is the maximum depth in the causal graph.
- Compute a feasible policy $\pi_v(e_i,e_f)$ for variable y, where
 - e_i is a current assignment
 - e_f is a goal assignment
 - $\pi_{v}(e_{i},e_{f})$ returns the sorted conditions of the first transition along a path from e_i to e_f.

Goal

closed dr = ondcmdin=close Idle **Failure Failure**

Burton computes next action (step 1)

Burton computes next action (step 2)

Failure occurs during plan execution Burton computes next action (step 3)

Burton computes next action (step 4) completing plan

Burton Complexity: ConstantAverage Cost

Cost of generating the first action:

- Worst Case: Maximum depth of causal graph.
- Average Cost: Constant time.
 - Each edge of the goal/subgoal tree traversed twice.
 - Each node of the goal/subgoal tree generates one action.
 - # edges < 2 * # nodes.

